General Instructions:

1. This Question paper contains - four sections A, B, C and D. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 4 MCQ 's and 1 Assertion-Reason based questions of 1 mark each.
3. Section B has 2 Very Short Answer (VSA)-type questions of 2 mark each.
4. Section C has 2 Short Answer (SA)-type questions of 3 mark each.
5. Section D has 1 Long Answer (LA)-type questions of 5 marks.

SECTION - A

(Multiple Choice Questions) Each question carries 1 mark

1. \quad For any 2 sets A and $\mathrm{B}, A \cap(A \cup B)^{\prime}=$
(a) A
(b) B
(c) \varnothing
(d) $A \cap B$
2. Let the universal set contain 800 elements. If A and B are subsets of U such that $n(A)=200$, $\mathrm{n}(\mathrm{B})=400, \mathrm{n}(\mathrm{A} \cup \mathrm{B})=500$. Then $\mathrm{n}\left(A^{\prime} \cup B^{\prime}\right)$ is
(a) 600
(b) 700
(c) 300
(d) none of these
3. Let R be a relation on N defined by $R=\{(x, y): x+2 y=8\}$, then the domain of R is
(a) $\{2,4,8\}$
(b) $\{2,4,6,8\}$
(c) $\{2,4,6\}$
(d) $\{1,2,3,4\}$
4. The range of the function $f(x)=\frac{|x+2|}{x+2}, x \neq-2$ is
(a) $\{1\}$
(b) $\{-1,0,1\}$
(c) $\{-1,1\}$
(d) none of these
5. Assertion - Reason based question.

In the following question, a statement of assertion (A) is followed by a statement of reason (R). Choose the correct answer out of the following choices.
(a) Both A and R are true and R is correct explanation of A
(b) Both A and R are true and R is not correct explanation of A
(c) A is true but R is false.
(d) A is false but R is true.

Assertion (A): Let A be the set of natural numbers and $B=\{1,2,3,4,5\}$ and $A-B=\{5,6,7,8,9 \ldots$.
Reason (R): If $A \subset B$, then $A \cap B=A$

SECTION - B

[This section comprises of very short answer type questions (VSA) of 2 marks each]

6.	Let $f(x)=x^{2}-x$ and $g(x)=x$ be be two real functions defined on positive real numbers. Find $(f-g)(x)$ and $(f g)(x)$. Hence find $(f-g)(-1)$ and $(f g)\left(\frac{1}{2}\right)$
7.	Find the angle in degrees through which a pendulum swings if its length is 50 cm and the tip describes an arc of length 10 cm. [OR] Find the radius of the circle in which a central angle of 60° intercepts an arc of length 37.4 cm. (Use $\left.\pi=\frac{22}{7}\right)$

SECTION - C

[This section comprises of short answer type questions (SA) of 3 marks each]
8. A and B are any two sets such that $n(A-B)=20+x, n(B-A)=3 x$ and $n(A \cap B)=x+1$. Draw a Venn diagram to illustrate the information. If $\mathrm{n}(\mathrm{A})=\mathrm{n}(\mathrm{B})$, then find (i) value of $\mathrm{x} \quad$ (ii) $n(A \cup B)$ [OR]
Let $U=\{x \in N: x \leq 20\}, A=\left\{x \in N: 4<x^{2}<40\right\}$ and $B=\{x \in N: x$ is prime number less than 10$\}$ $C=\left\{x \in N: x^{3}<10\right\}$
Verify $A \cap(B \cup C)=(A \cap B) U(A \cap C)$
9. Express the following angles in degrees
(a) $\frac{15 \pi}{3}$
(b) -3

SECTION - D
[This section comprises of long answer type questions (LA) of 5 marks]
10. Find the domain and range of
(a) $f(x)=\frac{1}{\sqrt{5+x}}$
(b) $f(x)=\sqrt{25-x^{2}}$
[OR]

Define Constant function and Greatest Integer function. Write their domain and range. Also draw rough sketch of both the graphs.

